ZETA

By passing clean energy tax incentives, Congress can ensure that the United States wins the clean transportation race, saving Americans money and creating millions of jobs.

Contents

Overview \& Key Takeaways Page 1
Comparing The Operating Costs Over The Past Six Months 2
Comparing the Fueling/Charging costs 3
Comparing the Operating Costs 4
Arizona 5
California 6
Colorado 7
Florida 8
Georgia 9
Michigan 10
New Jersey 11
Nevada 12
North Carolina 13
Ohio 14
Pennsylvania 15
Tennessee 16
Texas 17
Virginia 18
West Virginia 19
Wisconsin 20
Sources 21

Overview

This analysis compares the operating costs of gas-powered vehicles and electric vehicles (EVs) nationally and in various states. The three gas-powered cars featured in the analysis represent the most popular vehicles in the pickup truck, SUV, and sedan vehicle segments in the United States. The EVs included in this analysis are approximate analogues to the highlighted gas-powered vehicles. While they are imperfect corollaries to the gas-powered vehicles, these electric models nevertheless illustrate the substantial cost savings.

Key Takeaways on Cost to Drive an EV vs. a Gas-Powered Vehicle

Gas prices are inherently volatile-and they always will be. EVs, on the other hand, are not dependent on global oil and gas markets, so their operating costs are not subject to price shocks, disruptions, and supply shortages. Instead, EVs run on electricity, which is cheaper than gasoline and is domestically produced from increasingly renewable and local resources.

EVs are far cheaper to drive than gas-powered vehicles. Nationally, gas-powered vehicles are 3-5 times more expensive to drive per mile than EVs. In several states (including Arizona, Nevada, North Carolina, Tennessee, Virginia, and West Virginia), EVs can be driven at just 15-20\% of the cost of gas-powered cars per mile. In addition to examining this month's data, this ZETA report also looks back at the past six months, and the data confirms that over time, EVs are markedly cheaper to drive per mile-and experience far greater price stability-than gas-powered vehicles.

The total cost of EVs is lower than that of gas-powered vehicles. In many cases, EVs are already comparable in price to similar new gas-powered models. And in addition to their fuel cost savings, EVs require less maintenance than gas-powered vehicles, too. EVs can save drivers between \$1,800 and $\$ 2,600$ on operating and maintenance costs per year, according to Consumer Reports.

EVs will cost less to buy if Congress passes clean energy tax incentives. The proposed EV tax credit expansion in the clean energy tax plan will further reduce EV sticker prices, making it cost less to both buy and drive an EV. Furthermore, EV tax credits will help ensure that Americans can buy American-made EVs (rather than imports produced by our foreign competitors), which will create millions of good-paying American jobs and help the United States win the global clean transportation race. If we don't invest now, the U.S. will concede this race to our foreign competitors, hurting all Americans.

Comparing The Operating Costs of Electric and Gas-Powered Vehicles Over The Past Six Months

Cost Per Mile* To Drive electric and gas vehicles
*Gasoline prices are based on that month's data, and residential end-use sector electricity prices are backdated by three months. In both cases, these are the most recent available data. Even with inflationary pressures, the effect of electricity price changes on the operating costs of EVs has been minimal, as demonstrated in the data.

Comparing the Fueling/Charging costs of Gas-Powered and Electric Vechicles

National Average
Gas Price Per Gallon
(As of May 10)

National Average Electricity
Price Per Kilowatt-hour
(As of February 2022)

Comparing The Operating Costs of Gas-Powered And Electric Vehicles

Estimated Mileage

Arizona

Average Energy price for Gallon of Gasoline $\mathbf{\$ 4 . 6 7}$

Total fueling cost

Average Energy price for kWh in Electricity \$0.13

Total charging cost

California

Average Energy price for Gallon of Gasoline $\$ 5.84$

Total fueling cost

Average Energy price for kWh in Electricity $\mathbf{\$ 0 . 2 6}$

Total charging cost

Colorado

Average Energy price for Gallon of Gasoline \$4.10

Total fueling cost

Average Energy price for kWh in Electricity \$0.14

Total charging cost

Florida

Average Energy price for Gallon of Gasoline $\$ 4.28$

Total fueling cost

Average Energy price for kWh in Electricity $\$ 0.14$

Total charging cost

Georgia

Average Energy price for Gallon of Gasoline \$3.90

Total fueling cost

Average Energy price for kWh in Electricity \$0.12

$\mathbf{\$ 1 1 . 6 6}$	\$16.07	$\mathbf{\$ 6 . 4 3}$
Ford F150 Lightning (Estimate)	Rivian	Tesla R1T/S
Model 3 3 (Standard Range)		

Total charging cost

Michigan

Average Energy price for Gallon of Gasoline $\$ 4.35$

Total fueling cost

Average Energy price for kWh in Electricity \$0.17

Total charging cost

New Jersey

Average Energy price for Gallon of Gasoline

Total fueling cost

Average Energy price for kWh in Electricity \$0.16

	\$21.29	
\$15.46		\$8.52
Ford F150 Lightning (Estimate)	Rivian R1T/S	Tesla Model 3
(Standard Range)		

Total charging cost

Nevada

Average Energy price for Gallon of Gasoline \$5.13

Total fueling cost

Average Energy price for kWh in Electricity $\$ 0.13$

\$12.92	$\mathbf{\$ 1 7 . 7 9}$	$\mathbf{\$ 7 . 1 2}$
Ford F150 Lightning (Estimate)	Rivian R1T/S	Tesla Model 3 (Standard Range)

Total charging cost

Ford F150
Lightning (Estimate)

Rivian
R1T/S
Model 3 (Standard Range)

North Carolina

Average Energy price for Gallon of Gasoline

Total fueling cost

Average Energy price for kWh in Electricity \$0.11

$\mathbf{\$ 1 0 . 9 9}$	$\mathbf{\$ 1 5 . 1 3}$	$\mathbf{\$ 6 . 0 5}$
Ford F150 Lightning (Estimate)	Rivian R1T/S	Tesla Model 3 (Standard Range)

Total charging cost

Ohio

Average Energy price for Gallon of Gasoline \$4.18

Total fueling cost

Average Energy price for kWh in Electricity $\$ \mathbf{0 . 1 3}$

$\$ 11.68$	$\$ 16.09$	$\$ 6.44$
Ford F150 Lightning (Estimate)	Rivian R1T/S	Tesla Model 3 3 (Standard Range)

Total charging cost

Pennsylvania

Average Energy price for Gallon of Gasoline

Total fueling cost

Average Energy price for kWh in Electricity $\$ 0.15$

Total charging cost

Tennessee

Average Energy price for Gallon of Gasoline

Total fueling cost

Average Energy price for kWh in Electricity \$0.11

Total charging cost

Texas

Average Energy price for Gallon of Gasoline \$4.07

Total fueling cost

Average Energy price for kWh in Electricity \$0.12

\$12.03	\$16.58	
Ford F150 Lightning (Estimate)	Rivian	R6.63 R1T/S
Model 3 3 (Standard Range)		

Total charging cost

Virginia

Average Energy price for Gallon of Gasoline

Total fueling cost

Average Energy price for kWh in Electricity $\$ \mathbf{0 . 1 2}$

\$11.83	\$16.30	\$6.53
Ford F150 Lightning (Estimate)	Rivian R1T/S	Tesla Model 3 (Standard Range)

Total charging cost

West Virginia

Average Energy price for Gallon of Gasoline $\$ 4.20$

Total fueling cost

Average Energy price for kWh in Electricity \$0.12

Total charging cost

Wisconsin

Average Energy price for Gallon of Gasoline \$4.18

Total fueling cost

Average Energy price for kWh in Electricity $\$ 0.15$

Total charging cost

Sources

*Gasoline prices are based on May 2022 data, and residential end-use sector electricity prices are based on February 2022 data. In both cases, these are the most recent available data. Electricity prices have been relatively static; in many states, the price of residential end-use sector electricity has decreased from previous iterations of this report, which is updated monthly.
Gas Prices as of May 10, 2022: https://gasprices.aaa.com/
Electricity Prices in Residential End-Use Sector in Feb 2022 (most recent data
available): https://www.eia.gov/electricity/monthly/
Ford F150: https://www.ford.com/trucks/f750/models/f750-xl/
Toyota RAV4: https://www.toyota.com/rav4/features/mpg/4430
Honda Civic:
https://hondanews.com/en-US/honda-automobiles/releases/release-abdd33728c04421 7ba85db3c233b2483-2020-civic-hatchback-specifications-features

Ford F150 Lightning:

https://www.greencarreports.com/news/1134532_ford-confirms-f-150-lightning-ev-batt ery-pack-details-range-estimates
Rivian R1T + R1S:
https://www.caranddriver.com/news/a37500438/rivian-r7t-r1s-epa-range/
Tesla Model 3: https://www.evspecifications.com/en/model-driving-range/cc48e0

Additional Resources

Gas Gallons vs. Electricity E-Gallons: https: //www.energy.gov/maps/egallon Vehicle Fueling Cost Calculator: https://afdc.energy.gov/calc/

About Z E T A

The Zero Emission Transportation Association (ZETA) is a federal coalition focused on advocating for 100% EV sales by 2030. ZETA is committed to enacting policies that drive EV adoption, create hundreds of thousands of jobs, secure American global EV manufacturing leadership, drastically improve public health, and significantly reduce carbon pollution.

